SiC Matrix Composites for High Temperature Hypersonic Vehicle Applications, Phase II

Completed Technology Project (2011 - 2014)

Project Introduction

Durable high temperature materials are required for reusable hypersonic structural thermal protection systems. In particular, temperatures exceeding 2700°F, and approaching 3000°F, are targeted for capable structural materials that can survive stresses on the order of 10 ksi (70 MPa) for at least 100 hours in an oxidizing environment. Such materials have been identified as an enabling material for future hypersonic vehicles As this application is structural, a strong degree of damage tolerance is desired, and thus ceramic matrix composites are the primary choice due to the desire for reduced weight, high temperature strength and oxidation resistance. Silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composites are believed to be the most suitable solution due to meeting the requirements with the limitations of creep at the highest temperatures/loads, and oxidative attack at stresses that exceed the materials proportional limit. The proposed effort will define the temperature-stress limit of SiC/SiC composites, and examine methods to further extend this limit.

Primary U.S. Work Locations and Key Partners

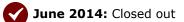
SiC Matrix Composites for High Temperature Hypersonic Vehicle Applications, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

SiC Matrix Composites for High Temperature Hypersonic Vehicle Applications, Phase II


Completed Technology Project (2011 - 2014)

Organizations Performing Work	Role	Туре	Location
Rolls-Royce High Temperature Composites Inc	Lead Organization	Industry	Huntington Beach, California
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Primary U.S. Work Locations	
California	Virginia

Project Transitions

June 2011: Project Start

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139328)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Rolls-Royce High Temperature Composites Inc

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

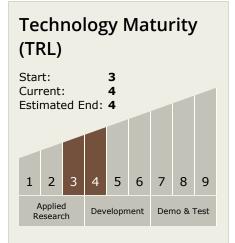
Carlos Torrez

Principal Investigator:

Robert Shinavski

Co-Investigator:

Robert Shinavski



Small Business Innovation Research/Small Business Tech Transfer

SiC Matrix Composites for High Temperature Hypersonic Vehicle Applications, Phase II

Completed Technology Project (2011 - 2014)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - └─ TX03.3 Power

 Management and

 Distribution
 - ☐ TX03.3.4 Advanced Electronic Parts

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

